Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 149: 105614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574841

RESUMEN

The United States Environmental Protection Agency (USEPA) uses the lethal dose 50% (LD50) value from in vivo rat acute oral toxicity studies for pesticide product label precautionary statements and environmental risk assessment (RA). The Collaborative Acute Toxicity Modeling Suite (CATMoS) is a quantitative structure-activity relationship (QSAR)-based in silico approach to predict rat acute oral toxicity that has the potential to reduce animal use when registering a new pesticide technical grade active ingredient (TGAI). This analysis compared LD50 values predicted by CATMoS to empirical values from in vivo studies for the TGAIs of 177 conventional pesticides. The accuracy and reliability of the model predictions were assessed relative to the empirical data in terms of USEPA acute oral toxicity categories and discrete LD50 values for each chemical. CATMoS was most reliable at placing pesticide TGAIs in acute toxicity categories III (>500-5000 mg/kg) and IV (>5000 mg/kg), with 88% categorical concordance for 165 chemicals with empirical in vivo LD50 values ≥ 500 mg/kg. When considering an LD50 for RA, CATMoS predictions of 2000 mg/kg and higher were found to agree with empirical values from limit tests (i.e., single, high-dose tests) or definitive results over 2000 mg/kg with few exceptions.


Asunto(s)
Simulación por Computador , Plaguicidas , Relación Estructura-Actividad Cuantitativa , Pruebas de Toxicidad Aguda , United States Environmental Protection Agency , Animales , Medición de Riesgo , Plaguicidas/toxicidad , Dosificación Letal Mediana , Ratas , Administración Oral , Pruebas de Toxicidad Aguda/métodos , Estados Unidos , Reproducibilidad de los Resultados
2.
Cutan Ocul Toxicol ; 43(1): 58-68, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37905558

RESUMEN

Many sectors have seen complete replacement of the in vivo rabbit eye test with reproducible and relevant in vitro and ex vivo methods to assess the eye corrosion/irritation potential of chemicals. However, the in vivo rabbit eye test remains the standard test used for agrochemical formulations in some countries. Therefore, two defined approaches (DAs) for assessing conventional agrochemical formulations were developed, using the EpiOcularTM Eye Irritation Test (EIT) [Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 492] and the Bovine Corneal Opacity and Permeability (OECD TG 437; BCOP) test with histopathology. Presented here are the results from testing 29 agrochemical formulations, which were evaluated against the United States Environmental Protection Agency's (EPA) pesticide classification system, and assessed using orthogonal validation, rather than direct concordance analysis with the historical in vivo rabbit eye data. Scientific confidence was established by evaluating the methods and testing results using an established framework that considers fitness for purpose, human biological relevance, technical characterisation, data integrity and transparency, and independent review. The in vitro and ex vivo methods used in the DAs were demonstrated to be as or more fit for purpose, reliable and relevant than the in vivo rabbit eye test. Overall, there is high scientific confidence in the use of these DAs for assessing the eye corrosion/irritation potential of agrochemical formulations.


Asunto(s)
Opacidad de la Córnea , Epitelio Corneal , Humanos , Animales , Bovinos , Conejos , Ojo , Epitelio Corneal/patología , Agroquímicos/toxicidad , Irritantes/toxicidad , Opacidad de la Córnea/inducido químicamente , Opacidad de la Córnea/patología , Permeabilidad , Alternativas a las Pruebas en Animales
3.
Arch Toxicol ; 96(11): 2865-2879, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35987941

RESUMEN

Robust and efficient processes are needed to establish scientific confidence in new approach methodologies (NAMs) if they are to be considered for regulatory applications. NAMs need to be fit for purpose, reliable and, for the assessment of human health effects, provide information relevant to human biology. They must also be independently reviewed and transparently communicated. Ideally, NAM developers should communicate with stakeholders such as regulators and industry to identify the question(s), and specified purpose that the NAM is intended to address, and the context in which it will be used. Assessment of the biological relevance of the NAM should focus on its alignment with human biology, mechanistic understanding, and ability to provide information that leads to health protective decisions, rather than solely comparing NAM-based chemical testing results with those from traditional animal test methods. However, when NAM results are compared to historical animal test results, the variability observed within animal test method results should be used to inform performance benchmarks. Building on previous efforts, this paper proposes a framework comprising five essential elements to establish scientific confidence in NAMs for regulatory use: fitness for purpose, human biological relevance, technical characterization, data integrity and transparency, and independent review. Universal uptake of this framework would facilitate the timely development and use of NAMs by the international community. While this paper focuses on NAMs for assessing human health effects of pesticides and industrial chemicals, many of the suggested elements are expected to apply to other types of chemicals and to ecotoxicological effect assessments.


Asunto(s)
Ecotoxicología , Plaguicidas , Animales , Humanos , Proyectos de Investigación , Medición de Riesgo
4.
Cutan Ocul Toxicol ; 40(2): 145-167, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33830843

RESUMEN

There are multiple in vitro and ex vivo eye irritation and corrosion test methods that are available as internationally harmonized test guidelines for regulatory use. Despite their demonstrated usefulness to a broad range of substances through inter-laboratory validation studies, they have not been widely adopted for testing agrochemical formulations due to a lack of concordance with parallel results from the traditional regulatory test method for this endpoint, the rabbit eye test. The inherent variability of the rabbit test, differences in the anatomy of the rabbit and human eyes, and differences in modelling exposures in rabbit eyes relative to human eyes contribute to this lack of concordance. Ultimately, the regulatory purpose for these tests is protection of human health, and, thus, there is a need for a testing approach based on human biology. This paper reviews the available in vivo, in vitro and ex vivo test methods with respect to their relevance to human ocular anatomy, anticipated exposure scenarios, and the mechanisms of eye irritation/corrosion in humans. Each of the in vitro and ex vivo methods described is generally appropriate for identifying non-irritants. To discriminate among eye irritants, the human three-dimensional epithelial and full thickness corneal models provide the most detailed information about the severity of irritation. Consideration of the mechanisms of eye irritation, and the strengths and limitations of the in vivo, in vitro and ex vivo test methods, show that the in vitro/ex vivo methods are as or more reflective of human biology and less variable than the currently used rabbit approach. Suggestions are made for further optimizing the most promising methods to distinguish between severe (corrosive), moderate, mild and non-irritants and provide information about the reversibility of effects. Also considered is the utility of including additional information (e.g. physical chemical properties), consistent with the Organization for Economic Cooperation and Development's guidance document on an integrated approach to testing and assessment of potential eye irritation. Combining structural and functional information about a test substance with test results from human-relevant methods will ensure the best protection of humans following accidental eye exposure to agrochemicals.


Asunto(s)
Agroquímicos/toxicidad , Cáusticos/toxicidad , Ojo/efectos de los fármacos , Irritantes/toxicidad , Pruebas de Toxicidad/métodos , Animales , Lesiones Oculares/inducido químicamente , Humanos
5.
Crit Rev Toxicol ; 46(1): 54-73, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26517449

RESUMEN

The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, "pseudomethrin," in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Mosquiteros Tratados con Insecticida/efectos adversos , Piretrinas/toxicidad , Animales , Toma de Decisiones , Exposición a Riesgos Ambientales/análisis , Humanos , Modelos Animales , Medición de Riesgo , Pruebas de Toxicidad , Estados Unidos , United States Environmental Protection Agency
6.
Toxicol Sci ; 114(1): 113-23, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19934164

RESUMEN

N-Methyl carbamate insecticides are reversible inhibitors of central and peripheral acetylcholinesterase (ChE). Despite their widespread use, there are few studies of neurotoxicity in young animals. To study potential age-related differences, we evaluated seven carbamates (carbaryl, carbofuran, formetanate, methiocarb, methomyl, oxamyl, and propoxur) in preweanling (17 days old or postnatal day [PND] 17) male rats. Motor activity was monitored, and ChE inhibition was measured in brain and red blood cells (RBCs) using a radiometric assay that minimized reactivation of ChE. First, we conducted time-course studies in PND17 Long-Evans male rats, using a single oral dose of each carbamate. Almost all carbamates showed maximal ChE inhibition at a 45-min time point; only methomyl showed an earlier peak effect (15 min). At 24 h, most inhibition had recovered. Next, dose-response data were collected for each carbamate, using four doses and control, with motor activity testing beginning 15 min after dosing and tissue collection at 40-45 min. RBC ChE was generally inhibited to a greater degree than brain. Motor activity was not as sensitive a measure for some of the carbamates, with some differences across carbamates in the shapes of the dose-response curves. Additional studies documented age-related differences by comparing ChE inhibition in PND11, PND17, and adult rats following administration of carbaryl or carbofuran. Only the youngest (PND11) rats were more sensitive than adults to carbaryl, but both younger ages showed more effects than adults with carbofuran. Comparisons of the other carbamates to previous studies in adult rats suggest similar age-related sensitivity. Thus, these data show the time-course and dose-response characteristics for each carbamate and document greater sensitivity of the young for carbofuran and carbaryl.


Asunto(s)
Carbamatos/toxicidad , Insecticidas/toxicidad , Acetilcolinesterasa/metabolismo , Factores de Edad , Animales , Encéfalo/enzimología , Relación Dosis-Respuesta a Droga , Eritrocitos/enzimología , Femenino , Masculino , Embarazo , Ratas , Ratas Long-Evans , Factores de Tiempo , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...